

Colorado Sch Mines

Columbia U

General Atomics

Johns Hopkins U

Nova Photonics

Old Dominion U

New York U

Princeton U

Think Tank, Inc.

Purdue U

UC Davis

UC Irvine

UCLA

UCSD U Colorado

U Illinois

U Maryland

U Rochester

U Wisconsin

U Washington

CompX

INEL

LANL

LLNL

MIT

ORNL

PPPL

PSI

SNL

Lodestar

Supported by Vertex States Vertex

CHI absorber arc mitigation using large inter-shot fueling

D.J. Battaglia

Oak Ridge National Laboratory, Oak Ridge, TN Participant in the U.S. DOE Fusion Energy Postdoctoral Research Program administered by ORISE & ORAU

> NSTX Research Forum Princeton, NJ Dec. 1 - 3, 2009

Culham Sci Ctr U St. Andrews York U Chubu U Fukui U Hiroshima U Hyogo U Kyoto U Kyushu U Kyushu Tokai U **NIFS** Niigata U **U** Tokyo JAEA Hebrew U loffe Inst **RRC Kurchatov Inst** TRINITI **KBSI** KAIST POSTECH ASIPP ENEA, Frascati CEA, Cadarache **IPP. Jülich IPP, Garching** ASCR, Czech Rep **U** Quebec

Absorber arcs lead to impurity injection and drain energy from capacitor banks

FY08: Prior to Absorber Coils

ONSTX

NSTX Research Forum

2

Discharges would benefit from mitigation of absorber arc breakdown or current

- Desire: Z_{abs} >> Z_{inj}
 - Enhance Z_{abs}
 - Increase magnetic shielding
 - Increase pathlength through vacuum
 - Reduce charge-carriers near absorber
 - Reduce Z_{inj}
 - Reduce pathlength through plasma (i.e. windup)
 - Increase charge-carriers in plasma edge
- Typical Z_{ini} (following breakdown)
 - NSTX: 1.5 kV / 1.5 kA ~ 1 Ω
 - Pegasus: 1.2 kV / 4 kA ~ 0.3 Ω
 - HIT-II: 2.0 kV / 20 kA ~ 0.1 Ω
 - SSPX: 0.3 kV / 200 kA ~ 2 m Ω

Operations on Pegasus used large inter-shot fueling to reduce Z_{ini} and mitigate arc-over current

- "Arc-over" in Pegasus observed at V_{bias} > 1.2 kV for I_{inj} ~ 4 kA
 - Current shorted through conducting vacuum vessel
 - Observed concurrent increase in C, O and P_{rad}
 - Not repeatable and often killed the discharge
 - More resilient to arc-over with improved wall conditions
- Z_{inj} tailored using inter-shot fueling rate
 - Injector impedance decreases with neutral fueling
 - More charge-carriers ?
 - Larger neutral fueling rate slows down I_p ramp
 - Decreased helicity injection rate with lower V_{inj} (since I_{inj} is fixed)
 - Energy deposited into increased ionization
 - Cools plasma, increasing resistance
 - Improved "roll-over" of I_p (i.e. reduced drop in I_p at injector shutoff)
 - Longer I_p ramp leads to increased L_i ?

Propose experiment to lower Z_{inj} for CHI in NSTX using a large inter-shot gas puff

- Propose 1 day experiment: Use SGI following CHI breakdown to reduce V_{ini} and slow down I_p ramp
 - Start with discharge just below threshold for absorber arc
 - Ex: 135614 (15 mF) with $\rm I_{p}$ ~ 250 kA
 - Increase SGI pressure until discharge is over gassed
 - Increase CHI bank stored energy ... repeat
- Positives:
 - Could extend length of CHI pulse if stored energy is increased
 - SGI fueling may increase ionized fraction, reducing the edge neutral pressure near the absorber
 - Slower I_p ramp may allow upper PF coil ramp to add additional PF field near absorber (i.e., shape control)
 - Denser SOL may reduce transport of sputtered impurities

SGI puff ~ 0.5 ms after breakdown

WNSTX

NSTX Research Forum